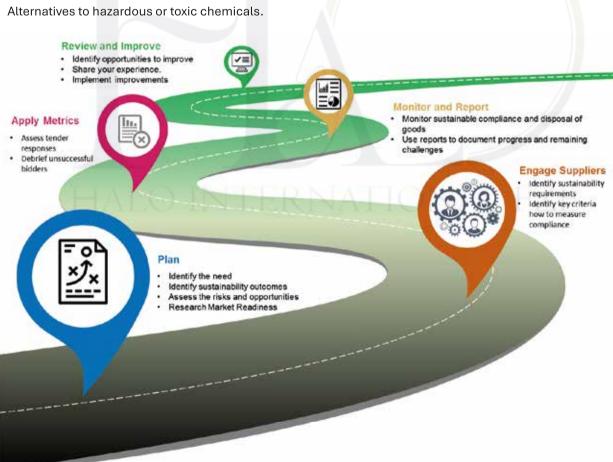
HALO Green & Sustainability

Green Acquisition Objectives

- Increase Safety and Survivability.
- Increase Operational Effectiveness.
- Optimize Through-Life Management.
- Reduce Through-Life Environmental Impact.
- Reduce non-local Dependencies.
- Increase Green Procurement Advantages Awareness.

Product Criteria


- Products manufactured from recovered materials.
- Environmentally preferable products.
- Energy-efficient products.
- Non-ozone depleting substances.
- Recycled content products.
- Environmentally preferable products and services.
- Biobased products, energy- and waterefficient products.
- Alternate fuel vehicles and alternative fuels.
- Products using renewable energy.

Services

- The technical expertise and qualifications of staff to carry out the contract in an environmentally friendly way.
- The products/materials used in carrying out the service.
- Management procedures put in place to minimise the environmental impact of the service.
- The energy and water consumed, and waste generated in carrying out the service.

Roles and Responsibilities

The responsibility for implementing Green Acquisition is not the responsibility of one organization, but with every person involved in the acquisition process.

HALO Green & Sustainability

Green / Net Zero Design, Delivery, and Operation

Designing and implementing green datacentres focuses on implementing environmentally sustainable practices and maximizing energy efficiency.

Energy-efficient Infrastructure

Optimized Location: Choosing a location that minimizes energy consumption.

Modular Design: Implementing a modular design for scalability and flexibility allows for the efficient use of resources and reduces overprovisioning.

Renewable Energy Sources

On-site Renewables: Integrating renewable energy sources like solar, wind, carbon capture to clean fuel conversion, or hydroelectric power.

Power Purchase Agreements (PPAs): Establishing agreements to purchase renewable energy from external sources.

Cooling Systems

Advanced Cooling Technologies: Advanced cooling technologies, such as advanced heat pumps, liquid cooling, and economizers.

Natural Cooling: Leveraging natural cooling methods to reduce the reliance on mechanical cooling systems.

Energy-efficient Servers and Storage

Energy-efficient Hardware: Choosing servers and storage solutions that prioritize energy efficiency without compromising performance.

Virtualization: Implementing virtualization technologies to optimize server usage.

Power Management

Power Distribution Units (PDUs): Utilizing advanced PDUs for efficient power delivery.

Power Management Tools: Tools and technologies for dynamic power management to optimize energy usage.

Monitoring and Analytics

areas for improvement.

Real-time Monitoring: Utilizing real-time monitoring systems to track energy consumption, temperature, and humidity levels.

Data Analytics: Employing analytics to identify

Waste Reduction and Recycling

E-waste Management: E-waste management and recycling of decommissioned hardware.

Component Reuse: Reuse of components, such as servers and storage devices.

Employee Education and Engagement

Training Programs: Training programs to educate data center staff about green practices and sustainability.

Employee Involvement: Involving employees in energy-saving initiatives and improvement efforts.

Futureproofing and Innovation

Investment in Emerging Technologies: Staying updated on emerging technologies, such as AI, IoT, and advanced energy storage solutions that enhance energy efficiency.

Flexibility for Future Changes: Designing data centers with flexibility to adapt to future innovations and sustainability trends.

